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In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of
arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube
with relative error less than 1% once its chirality and the total number of atoms are known. The parameters of
the liquid surface model and its potential applications are discussed. The model has been suggested for open
end and capped nanotubes. The influence of the catalytic nanoparticle, atop which nanotubes grow, on the
nanotube stability is also discussed. The suggested model gives an important insight in the energetics and
stability of nanotubes of different chirality and might be important for the understanding of nanotube growth
process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability
to the study of carbon nanotubes. From the calculated energies we determine the elastic properties of the
single-wall carbon nanotubes �Young modulus, curvature constant� and perform a comparison with available
experimental measurements and earlier theoretical predictions.
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I. INTRODUCTION

Right from the initial report of the existence of carbon
nanotubes by Iijima �1�, studies have been performed to un-
derstand their properties. Carbon nanotubes are tube-shaped
nanostructures of carbon with electrical, mechanical, and
thermal properties that derive from the special features of
carbon bonds, their quasi-one-dimensional nature, and their
cylindrical symmetry. These properties include very high
elastic modulus, tensile strength, thermal conductivity, and
electrical conductivity �see, for example, �2–6� and refer-
ences therein�.

Carbon nanotubes have radii typically ranging from
0.2 nm to tens of nanometers �7� and lengths of up to several
millimeters �8�. They are considered to be one of the stron-
gest materials discovered so far. The Young’s modulus and
shear modulus of a typical nanotube are calculated and is
found to be comparable to those of diamond �9–11�. Experi-
mental studies have confirmed this �12�. The Young’s modu-
lus obtained by different studies lies in the range of
0.32–5.5 TPa �9–23� for a nanotube while for stainless steel
it is of the range of 0.1–0.2 TPa �24�. Another important
feature of carbon nanotubes is their softness to lateral forces.
There are studies using molecular dynamics methods which
show that under axial compression, a single-wall nanotube
buckles and eventually undergoes shape changes �25�. These
shape changes result in an abrupt release of energy and a
singularity in the stress-strain curve �26�, which can be
treated as a structural phase transition in carbon nanotubes
�27–29�. Another important property of carbon nanotubes is
their high elastic flexibility. Iijima and co-workers observed
fully reversible bending of carbon nanotubes by high reso-
lution electron microscopy �30,31�.

Chemical vapor deposition �CVD� is a standard technique
for obtaining high quality carbon nanotubes in technologi-

cally significant quantities �32–34�. In catalytic CVD a pat-
terned array of catalyst nanoparticles �typically, Ni, Co or Fe
nanoclusters� is attached to a substrate. It allows one to grow
vertically aligned nanotube arrays, very well suited for vari-
ous applications in thin films development, electronics, bio-
physics, etc. There are numerous empirical recipes for im-
proving production efficiency and quality of the carbon
nanotubes, such as, e.g., plasma-enhanced CVD �35�. How-
ever, in spite of intensive research and a huge amount of
experimental knowledge, the physical mechanisms leading to
the catalytically assisted carbon nanotubes growth remain a
widely debated issue. It is evident that a breakthrough in
understanding the growth mechanisms would facilitate fur-
ther improvements in the growing technologies leading to a
better quality of the nanotubes and to a better control over
the nanotubes properties.

Because of their unique properties, carbon nanotubes have
been considered as potential candidates for a variety of elec-
trical, mechanical, and chemical applications. However, in
order to use them commercially, many issues need to be
resolved. One of the major issues is the controlling of the
chirality of carbon nanotubes during its synthesis. Chirality
is a special property of nanotube which describes how much
it is twisted, and is defined by two integer numbers n and m,
which are called chiral indices. Most of the important elec-
trical, mechanical and chemical properties of carbon nano-
tubes are dependant on the chirality of the nanotube
�5,6,9,13,36–38�. Hence, a detailed study on how the chiral-
ity of a nanotube influences its energetics is very important
for a proper understanding of various properties of nano-
tubes.

In this paper we propose a model for calculating the en-
ergy of single-wall carbon nanotubes of arbitrary chirality. It
assumes that the total energy of a single-wall nanotube can
be written as a sum of surface, curvature, and edge energy
terms. The first model of this kind was proposed by Lord
Rayleigh in 1882 in his studies on stability of charged drop-
lets and was called the liquid drop model. Later on, Born and
Wheeler developed a similar model to explain the fission of
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large nuclei �39�. The liquid drop model was also used for
the study of atomic clusters �40–44�.

Because of the similarity of the suggested model to that
used in the study of liquid droplets, nuclei, and clusters we
adopted the name liquid surface model. Similar models were
already discussed for nanotubes �45–50�, but the studies
were limited only to specific types of nanotubes, namely zig-
zag and armchair. Contrary to the earlier studies, our model
can be applied to nanotubes of arbitrary chirality and length.
The major difference between the liquid drop model and the
liquid surface model is that for single-wall nanotubes the
liquid surface model does not contain a volume energy part.
The volume energy appears in the liquid surface model in the
case of multiwall nanotubes.

We have investigated open end carbon nanotubes with
chiral index n varying from n=5 to n=10, while index m
varies from m=0 to m=5. For each chirality, the energy of
nanotubes of different lengths was calculated and the depen-
dence of the binding energy on the nanotube length was ob-
tained. The results of the calculations were used to determine
the parameters of the liquid surface model.

Open end nanotubes can be produced in experiment
�51–53�, but are difficult to study, because of the high reac-
tivity of the edge atoms �54�. Thus in many experiments
nanotubes form caps of carbon atoms �55,56�. Beside this
fact, in the CVD process nanotubes grow from the catalytic
metal nanoparticle and the interaction between the catalytic
nanoparticle and the nanotube plays an important role on the
stability of the system. In the present paper we apply the
liquid surface model to the capped nanotubes and study how
the catalytic nanoparticle impacts on the energy of the sys-
tem. We have studied capped nanotubes of the following
chiralities: �5,0�; �6,0�; �5,5�; �9,0�; �10,0�; �6,6�; �12,3�;
�10,10�; �15,5�; �19,0�; �11,11�; �23,0�; �16,16�; �28,0�.

Carbon based structures are often modeled with the use of
the so-called bond-order potentials �15–17,57�, which ac-
count for neighbors of each atom. The two widely used
bond-order potentials are the Tersoff potential �58� and the
Brenner potential �11,59�. It is believed that the Brenner po-
tential accounts more accurately for the �-bondings in the
system, and therefore is better for the description of carbon
nanotubes �11,59,60�. In this paper we illustrate that both
potentials lead to similar results and can be used for model-
ing of carbon nanotubes.

To stress the differences between the Tersoff and the
Brenner potential we described the interaction between at-
oms in the open end nanotubes using Tersoff potential, while
we used Brenner potential for the capped nanotubes. For
chiralities �5,5�; �5,0�; �6,0�; and �9,0� we additionally calcu-
lated the capped nanotubes using the Tersoff potential and
performed a comparison of energies obtained with the use of
both potentials. We also calculated the curvature energy for
nanotubes of different radii and from this dependence deter-
mined the curvature constant and the Young modulus for the
single-wall carbon nanotubes. The calculated values were
compared with results of available experimental measure-
ments and earlier theoretical calculations.

II. THEORETICAL METHODS

For the sake of completeness, we introduce the idea of
chirality of nanotubes in Sec. II A. Section II B is devoted to

the discussion of the Tersoff and Brenner potentials, which
were used for the description of nanotubes. Sections II C and
II D describe the liquid surface model and its parameters in
the case of the open end and capped nanotubes respectively.

A. Nanotube chirality

Carbon nanotubes are modeled as cylinders of carbon at-
oms rolled from a graphene sheet. The idea of obtaining a
carbon nanotube from a graphene sheet as well as the con-
cepts of zigzag, armchair, and chiral nanotubes are illustrated
in Fig. 1. The way of rolling the graphene sheet determines
the chirality of a nanotube �7,61�. The chirality is specified
by two integer numbers, n and m, where 0�m�n. If m=0,
the nanotube is called zigzag while if m=n, it is called arm-
chair. All other nanotubes are called chiral nanotubes �61�.
The vector in the graphene sheet, defined by n and m is

called the chirality vector. In Fig. 1 it is denoted as C� h. To
define the chirality vector, two basis vectors a�1 and a�2 are
introduced. The chiral indices n and m are the number of
steps that should be taken along the a�1 and a�2 directions,
respectively, in order to reach the tip of the chirality vector.
To construct the nanotube, the graphene sheet is folded along
the chirality vector. The vector along the axial direction of
the nanotube is called the translation vector. It is perpendicu-

lar to the chirality vector and in Fig. 1, it is denoted as T� .

B. Energy calculation

To study the structure and energetics of carbon nanotubes,
we used the bond-order Tersoff �58� and Brenner �59�

FIG. 1. �Color online� Construction of a nanotube from a
graphene sheet. The vectors a�1, a�2 are the basis vectors in the
graphene sheet. The chiral index n is the number of steps in the a�1

direction and the chiral index m is that in the a�2 direction. C� h

=na�1+ma�2 is the chirality vector, and T� is the translation vector and
is in the direction of the tube axis. The chiral vector directions for
both zigzag �m=0� and armchair �m=n� nanotubes are indicated.
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empirical potentials, which were developed for covalent sys-
tems and parametrized for carbon �59,62�. Both potentials
are many-body potentials, which depend on the nearest
neighbors of atoms and have the following form:

Vij = fC�rij��fR�rij� − bijfA�rij�� . �1�

Here, fC�rij� is the cutoff function which limits the interac-
tion of an atom to its nearest neighbors, which is defined as

fC�rij� = �
1, rij � R − D ,

1

2
−

1

2
sin��

2
�rij − R�/D� , R − D � rij � R + D ,

0, rij � R + D ,
� �2�

where rij is the distance between the ith and the jth atoms, R
and D are parameters which determine the range of the po-
tential and are taken from Ref. �62� for the Tersoff potential
and from Refs. �11,59� for the Brenner potential. The func-
tions fR�rij� and fA�rij� in Eq. �1� are the repulsive and the
attractive terms of the potential, respectively. In the case of
the Tersoff potential these terms are defined as follows:

fR�rij� = A exp�− �1rij� , �3�

fA�rij� = B exp�− �2rij� . �4�

Here, A, B, �1, and �2 are positive parameters of the poten-
tial, which were derived for carbon in Ref. �62�. The Brenner
potential implies the following parametrization for fR and fA:

fR�rij� =
De

S − 1
exp�− 	2S��rij − Re�� , �5�

fA�rij� =
DeS

S − 1
exp�− 	2/S��rij − Re�� , �6�

where the parameters De, S, �, and Re are determined from
the known physical properties of carbon, graphite, and dia-
mond �11,59�. The factor bij in Eq. �1� is the so-called bond
order term, which is defined as follows:

bij = �1 + ���ij�n0�−�, �7�

where � and n are parameters of the potential, while �ij is
defined as:

�ij = 

k�i,j

fC�rik�g�	ijk� . �8�

Here, fC�rik� is the cutoff function introduced in Eq. �2�. The
function g�	ijk� is defined as

g�	ijk� = a�1 +
c2

d2 −
c2

d2 + �h − cos 	ijk�2� , �9�

where 	ijk is the angle between bonds formed by pairs of
atoms �i , j� and �i ,k�.

The Tersoff and Brenner potentials were used earlier for
the studies of stability and for the calculation of the struc-
tural properties of many carbon systems including fullerenes

�60,63–65� and nanotubes �11,48,50,66�. The parameters of
both potentials are slightly different in different papers. In
Table I, we compile the parameters used in the present paper
which are consistent with those discussed in Refs.
�11,59,62�.

C. Liquid surface model: Open end nanotubes

Let us consider an open end nanotube. According to the
liquid surface model, the total energy of a nanotube can be
expressed as a sum of three terms which are determined by
the nanotube geometry, namely, the surface area, curvature
of the surface, and the edge

E = Es + Ec + Ee. �10�

In order to understand the origin of these three different
energy contributions, consider a graphene sheet shown in
Fig. 1. The energy of the plane sheet depends on the total
number of atoms in it. For a graphene sheet of finite size,
there are two kinds of carbon atoms: Atoms within the sheet
and atoms at the edge of the sheet. Hence, the energy of the

TABLE I. Parameters of the Tersoff �62� and Brenner �11,59�
potentials used in the calculations.

Tersoff
parameter

Tersoff
value

Brenner
parameter

Brenner
value

A �eV� 1393.6 De �eV� 6.325

B �eV� 346.74 S 1.29

�1 �Å−1� 3.4879 � �Å−1� 1.5

�2 �Å−1� 2.2119 Re �Å� 1.315

�
10−7 1.5724 � 1.0

n0 0.7275 n0 1.0

� 0.6873 � 0.80469

a 1 a 0.011304

c 38049 c 19

d 4.3484 d 2.5

h −0.57058 h −1.0

R �Å� 1.95 R �Å� 1.85

D �Å� 0.15 D �Å� 0.15
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sheet depends on two quantities: Its surface and the number
of atoms at the edge. The edge energy arises from the carbon
atoms at the edge which have dangling bonds. When the
graphene sheet is rolled up to form a nanotube, two edges of
the sheet meet each other resulting in closing of dangling
bonds along those edges. This leads to a decrease of edge
energy in the nanotube compared to that in the graphene
sheet. But at the same time, the rolling up of the graphene
sheet causes an increase of the strain energy in a nanotube,
i.e., elastic energy needed to roll a planar sheet up into a
cylinder. The edge energy is directly proportional to the
number of dangling bonds at the edge, which in the case of a
nanotube is equal to the number of carbon atoms at the edge.
For a nanotube of chirality �n ,m�, the number of carbon
atoms at one edge is given by n+m.

In order to derive explicit expressions for the energy con-
tributions, we define that a nanotube consists of two parts—
the two edges of length �x, and the inner part of length L
�see Fig. 2�a��. �x is defined in such a manner that all carbon
atoms with less than three bonds are part of it.

If Ni is the number of carbon atoms in the inner part of the
nanotube and Ne is that at one edge, the total number of
atoms in the nanotube can be written as

N = Ni + 2Ne. �11�

Let �i be the area per atom in the inner region. Then the
surface area of the inner region of the nanotube can be writ-
ten as

Si = 2�RL = �iNi = �iN − 2�iNe. �12�

Here R is the radius of the nanotube and L is its length, as
illustrated in Fig. 2. If  is energy density per atom and c
=�c /R2 is the curvature energy per atom; �e is the area per
atom at the edge of the nanotube, then the surface, edge, and
curvature energy terms can be written as follows:

Es = �
Si

dS = Si, �13�

Ec = �
Si+2Se

cdS = �
Si+2Se

�c
1

R2dS = �c
Si + 2Se

R2 , �14�

Ee = 2�x�2�R� = 2�eNe. �15�

Here Se is the area of the edge of the nanotube and �c is the
specific curvature energy of a nanotube. Substituting Eqs.
�13�–�15� into Eq. �10�, one derives

E = Si + �c
Si + 2Se

R2 + 2�eNe. �16�

Substituting Si from Eq. �12�, one obtains

E = �i�N − 2Ne� + �c
�iN − 2�iNe + 2�eNe

R2 + 2�eNe.

�17�

Rearranging the terms,

E = ��i +
�c�i

R2 �N + 2��e − �i −
�c�i

R2 +
�c�e

R2 �Ne,

�18�

where Ne=n+m. The radius of the nanotube is determined
by the chiral indices n and m �5,7�,

R =
	3�a

2�
	n2 + m2 + nm , �19�

where �a is the average interatomic distance in the nano-
tube. The area per atom in the inner region of a nanotube can
be calculated as the area of a triangle shown in Fig. 3 and
reads as

�i =
3	3

4
�a2. �20�

The area per atom at the edge of a nanotube is smaller and
can be written as

FIG. 2. �Color online� Different parts of the nanotube consid-
ered in the liquid surface model are shown. �a� Open end nanotube;
�b� capped nanotube. �x is the width of the edge region of the
nanotube, Ne and Se are the number of atoms in the edge region and
the area of this region, respectively. Ni and Si are the number of
atoms in the inner region and its surface area, respectively. L and R
are the length and the radius of the nanotube. Ncap and Scap are the
number of atoms in the cap and its surface area, respectively.

FIG. 3. �Color online� Area per atom in the inner and edge
regions of a nanotube. �a indicates the average bond length in a
nanotube.
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�e = ��i, �21�

where �� �0¯1� is a dimensionless parameter. Substituting
Eqs. �19�–�21� into Eq. �18� and clubbing all constants, one
obtains

E = 	3�3�a2

4
+

�2�c

n2 + m2 + nm
��N + 2�� − 1��n + m�� .

�22�

As follows from Eq. �22� the energy of a nanotube depends
on the energy density per atom , the specific curvature en-
ergy �c, and parameter � defining the ratio of the area per
edge atom to the area per atom in the inner region of a
nanotube. If the total number of atoms and the chirality of
the nanotube are known, the total energy and the binding
energy per atom can be calculated using Eq. �22�. In order to
determine the parameters , �c, and �, we consider nano-
tubes with chiralities ranging from n=5 to n=10, where for
each n, 0�m�5 and N=50–450. By fitting the numerically
calculated values of energy with Eq. �22� one derives the
values for the parameters , �c, and �. The results are dis-
cussed in Sec. III in detail.

D. Liquid surface model: Capped nanotubes

The liquid surface model can also be applied to the study
of capped nanotubes. In this case the total energy of a nano-
tube reads as

E = Es
tube + Ec

tube + Es
cap + Ec

cap + Ee, �23�

where Es, Ec and Ee are the energies of the surface, curva-
ture, and the edge, respectively. Superscripts “tube” and
“cap” refer to the cylindrical and the cap parts of the nano-
tube, respectively. The total number of atoms in a capped
nanotube can be written as

N = Ni + Ne + Ncap, �24�

where Ni, Ne, and Ncap are the number of carbon atoms in the
inner part of the nanotube, at the edge and the number of
atoms in the cap �see Fig. 2�b�� which reads as

Ncap =
Scap

�cap
=

2�R2

�cap
. �25�

Here Scap is the surface area of the cap, and �cap is the area
per atom in the cap. The surface energy term of a nanotube
with a cap can thus be written as

Es
tube = �i�N − Ncap − Ne� = �i�N −

2�R2

�cap
− Ne� . �26�

Since a capped nanotube has only one edge the curvature
energy term reads as

Ec
tube = �

Si+Se

�c
1

R2dS =
�c�i

R2 N +
�c��e − �i�

R2 Ne −
2��c�i

�cap
.

�27�

The edge energy term in Eq. �23� is defined as

Ee = �x�2�R� = �eNe. �28�

The surface and curvature energies of the cap in Eq. �23� can
be written as follows:

Es
cap = �

Scap

dS = Scap = 2�R2, �29�

Ec = �
Scap

�c
cap 1

R2dS = 2��c
cap. �30�

Substituting Eqs. �26�–�30� into Eq. �23�, one derives

E = ��i +
�c�i

R2 �N + ���e − �i� +
�c��e − �i�

R2 �Ne

+
2�

�cap
��cap − �i�R2 + 2��c

cap −
2��c�i

�cap
. �31�

The area per atom in the inner part of the nanotube can be
related with the area per atom in the cap as follows:

�i = ��cap. �32�

Substituting Eqs. �19�–�21� and Eq. �32� into Eq. �31� and
clubbing all constants, one obtains

E = 	3�3�a2

4
+

�2�c

n2 + m2 + nm
��N + �� − 1��n + m��

+
3�a2

2�
�1 − ���n2 + m2 + nm� + 2���c

cap − �c�� .

�33�

The last two terms in Eq. �33� account for the structure of the
nanotube cap, while the first term corresponds to the energy
of an open end nanotube with one edge �see Sec. II C�. Thus
the energy of a capped nanotube is determined by the five
parameters: Energy density per atom , the specific curva-
ture energies �c and �c

cap, as well as parameters � and 1 /�
defining the ratio of the area per edge atom and the area of an
atom in the cap to the area per atom in the inner region of a
nanotube.

III. RESULTS AND DISCUSSION

A. Parameters of the liquid surface model

To calculate parameters �, �c, �� for the open end and �,
�c, �cap, �, �� for the capped nanotubes we considered struc-
tures of different length and chirality. To determine the pa-
rameters of the liquid surface model for the open end nano-
tubes we have calculated the energies for the structures with
N=50–450, n=5–10, and m=0–5 and fitted the obtained
values with Eq. �22�. The calculation for the capped nano-
tubes is more difficult, because one needs to construct a cap
for a nanotube of a given chirality.

We have used the following procedure for the nanotube
cap construction. A nanotube of chirality �n ,m� has n+m
atoms at the edge which should form bonds with the cap. The
cap should be one-half of a fullerene with the radius equal to
the radius of the nanotube. The construction of the fullerene
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starts either from a hexagon or a pentagon and is continued
by adding hexagons and pentagons sequentially row by row
around the initial one. This procedure has been well de-
scribed, e.g., in Ref. �67�. For the C60 family of fullerenes
�e.g., C60, C240, C720� only certain radii are possible and
therefore only some chiralities can be capped with an ideal
semifullerene. To construct a cap for arbitrary chirality one
needs to introduce one or several defects �for example, to
place a pentagonal ring instead of a hexagonal one� in the
cap structure. In the present paper we demonstrate this on
several examples.

To calculate parameters of the liquid surface model for
capped nanotubes we considered structures with chiralities
�5,0�; �6,0�; �5,5�; �9,0�; �10,0�; �6,6�; �12,3�; �10,10�; �15,5�;
�19,0�; �11,11�; �23,0�; �16,16�; �28,0�, containing N
=50–3000 atoms.

The resulting values of �, �c, �� for the open end and of
�, �c, �cap, �, �� for the capped nanotubes are compiled in
Table II. For the calculation of the open end nanotubes we
used the Tersoff potential, while the capped nanotubes were
studied with the use of the Brenner potential.

Parameters , �c, and � should be the same for the open
end and capped nanotubes. From Table II follows that for
both cases parameters  and � are very close to each other,

and parameters �c are of the same order of magnitude. The
differences arise because different potentials were used for
the computation of parameters for the open end and capped
nanotubes.

It is also worth noting that parameter � is very close to
unity, indicating that the area per atom in the inner part of a
nanotube is almost the same as the area per atom in the cap
as follows from Eq. �32�.

B. Analysis of binding energy per atom

As predicted by the liquid surface model the total binding
energy for an open end and capped nanotube is given by Eqs.
�22� and �33�, respectively. The binding energy per atom
reads as

� =
E

N
, �34�

where E is the total energy of a nanotube and N is the total
number of atoms in it. The result of comparison of the bind-
ing energy per atom predicted by the liquid surface model
and that calculated using the Tersoff potential for the open
end nanotubes is illustrated in Fig. 4, which shows the de-
pendence of the binding energy on the total number of atoms
in the system. Different symbols �squares, triangles, stars,
dots� in Fig. 4 represent the values calculated using the Ter-
soff potential and the lines near the corresponding symbols
show the predictions of the liquid surface model.

Figure 4 shows that nanotubes become more stable as
their length increases. This happens because of the nano-
tube’s edge. If L is the length of a nanotube and R is its
radius, one can introduce a parameter to characterize the
edge of a nanotube as follows:

TABLE II. Values for the parameters , �c, �cap, �, and � used
in the liquid surface model for open end and capped nanotubes.

Nanotube
type  �eV /Å2� �c �eV� �cap �eV� � �

Open end −2.8669 0.5879 0.6925

Capped −2.8564 0.3550 0.6624 0.6900 0.9998

FIG. 4. �Color online� Comparison of the binding energy per atom calculated using the Tersoff potential and that obtained from the liquid
surface model for the open end nanotubes. The curves show the values predicted by the model and different symbols �squares, triangles,
stars, dots� correspond to the calculated values. The plots are shown for n=5–10. Each curve in one plot corresponds to a different m value.
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� =
2�R

L
. �35�

If ��1, the edge has a major influence on the nanotube
energetics because in this case the size of the edge becomes
comparable with the size of the inner part of the nanotube.
As the nanotube grows in length, the parameter �, Eq. �35�,
decreases and in the limiting case �infinitely long nanotube�
it reaches zero, reflecting the fact that the influence of the
edge diminishes. The limiting values of the binding energy
per atom for infinitely long nanotubes of different chirality
are indicated in Fig. 4.

Another important feature shown in Fig. 4 is that the en-
ergetically favorable chirality of a nanotube depends on the
total number of carbon atoms in it. As the total number of
atoms increases, nanotubes with larger chiralities �higher ra-
dii� become energetically more favorable, whereas nanotubes
of smaller radii are energetically favorable at smaller lengths.
See, for example, top middle plot in Fig. 4, where this fact is
clearly seen for nanotubes with n=6. When the total number
of atoms in this example is less than 100, the binding energy
per atom decreases with increase of m, while an opposite
behavior is observed when the total number of atoms in the
nanotube exceeds 180. This fact has a simple explanation.
Figure 4 shows the dependence of the binding energy on the
total number of atoms in the system. Thus, for a given num-
ber of atoms the length of a nanotube decreases if the radius
of a nanotube grows. Therefore, nanotubes with smaller
number of atoms �e.g., less than 100 for the n=6 case� with
smaller value of the chirality number m are energetically
more favorable, because the edge to length ratio �, Eq. �35�,
is smaller than in the case of nanotubes with larger m value.

If L�R, then the edge of a nanotube has a minor influ-
ence on its energetics. Therefore, nanotubes of larger radius
should become energetically more favorable, since the cur-
vature energy in this case is smaller.

In order to conclude about the accuracy of the liquid sur-
face model, we determined the relative deviation of the bind-
ing energy per atom predicted by the liquid surface model
from the binding energy per atom calculated using the Ter-
soff potential, which is defined as follows:

�LS =
� − �LS

�LS
, �36�

where �LS and � are the binding energy per atom obtained
from the liquid surface model and from calculations using
the Tersoff potential respectively.

Figure 5 shows the relative deviation, �LS, for nanotubes
of different chiralities. In each plot, different curves corre-
spond to different m values. The maximum relative deviation
is found to be �0.2%. This illustrates that the liquid surface
model is successful and can be used for predicting the energy
of nanotubes.

The discussed model neglects the van der Waals energy
between the atoms of a nanotube. In order to understand how
the van der Waals interaction affects the energetics of the
nanotubes, we have calculated the van der Waals energy per
atom for nanotubes with n=5 to n=10 for arbitrarily selected
m values. These calculations are performed with the MBN-
Explorer package �68� and the parameters of the van der
Waals interaction are taken from Ref. �69�. The van der
Waals interaction between carbon atoms was parametrized
with the Lennard-Jones potential with the equilibrium dis-
tance equal to 3 Å and the minimum energy 0.52 meV, as

FIG. 5. �Color online� Relative deviation of the liquid surface model predictions of the binding energy per atom from that calculated
using the Tersoff potential, Eq. �36�, for the open end nanotubes. Plots are shown for n=5–10. Each curve in one plot corresponds to
different m values.
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suggested in Ref. �69� for fullerenes. The van der Waals in-
teraction was calculated between all non-neighboring atoms,
which were defined as atoms being more than 1.6 Å away
from each other.

It has been observed that the van der Waals energy per
atom is �17–43 meV for all nanotubes, while the binding
energy per atom is �6.6–7.2 eV. Therefore, the van der
Waals energy in nanotubes is almost negligible and we ne-
glect it in our model.

Figure 6 shows the dependence of the binding energy per
atom on the nanotube size calculated for the capped nano-
tubes with the use of the Brenner potential. Figure 7 illus-
trates the relative deviation of the binding energy per atom
predicted by the liquid surface model from the corresponding
values calculated with the use of the Brenner potential.

Figure 6 shows that the binding energy per atom for the
capped nanotubes decreases with the increase of the nano-
tube length demonstrating the fact that longer nanotubes are
energetically more favorable than the shorter ones. The rela-
tive deviation �LS, Eq. �36�, for the capped nanotubes, shown
in Fig. 7 is below 0.3%, corresponding to the absolute energy
difference of less then 0.01 eV�116 K. This energy differ-
ence is much below the energy of thermal vibrations in the
system because the typical nanotube growth temperature is
about 700–1200 K �see, e.g., Refs. �33,70,71��.

From Fig. 7 it can be noted that the relative deviation of
energy is larger for shorter nanotubes. This happens because
we neglect the cap deviation from a semisphere, as discussed

in the preceding section. Indeed for shorter nanotubes the
cap has a stronger impact on the binding energy per atom
and therefore accounting for its deformation in this case be-
comes more important.

FIG. 6. �Color online� Plots �a�–�n�: Comparison of the binding energy per atom calculated using the Brenner potential and that obtained
from the liquid surface model for the capped nanotubes. The curves show the values predicted by the model and dots correspond to the
calculated values. Plots �o� and �p� show the binding energies per atom calculated for capped �dots� and open end �squares� nanotubes of
close sizes with chiralities �28,0� and �5,0�. The chirality of the nanotubes is indicated in the inset to the plots.

FIG. 7. �Color online� Relative deviation of the liquid surface
model predictions of the binding energy per atom from that calcu-
lated using the Brenner potential, Eq. �36�, for the capped nano-
tubes. Each dot in the plot corresponds to a certain nanotube of a
given length and chirality.
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In the last two plots in Fig. 6 we compare the binding
energies per atom calculated for the capped and open end
nanotubes of close sizes with chiralities �28,0� and �5,0�. The
comparison shows that the binding energy per atom for the
open end nanotubes is higher than the binding energy per
atom for the capped nanotubes because open end nanotubes
have more dangling bonds at the edge and therefore are en-
ergetically less favorable. The differences in energies of open
end and capped nanotubes arise only for nanotubes of finite
length where the edge atoms play an important role, while
for infinitely long structures the binding energies per atom
are identical. This behavior is seen in Fig. 6, where the dif-
ference between the binding energy per atom for the open
end and capped nanotubes is higher for shorter nanotubes
than for the longer ones.

C. Comparison of Tersoff and Brenner potentials

It is believed that Brenner potential accounts more accu-
rately for the �-bondings in the system, and therefore is bet-
ter for the description of carbon nanotubes �11,59,60�. To
stress the differences between the Tersoff and the Brenner
potential in Fig. 8 we compare the binding energy per atom
calculated with the use of both methods for capped nano-
tubes of several chiralities. Figure 8 shows that the binding
energy per atom calculated with the use of Tersoff potential
is higher than the binding energy per atom calculated with
the use of Brenner potential. The energy difference is de-
creasing with the radius of the nanotube and is approxi-
mately equal to 0.13 eV, 0.08 eV, 0.03 eV, and 0.02 eV for
nanotubes with chiralities �5,0�, �6,0�, �5,5�, and �9,0�, re-
spectively, being less than 1% of the absolute value of the
binding energy per atom in the nanotube.

The comparison in Fig. 8 demonstrates that the difference
between the energies calculated with the use of Brenner and
Tersoff potentials decrease with the nanotube radius leading
to a conclusion that for nanotubes of higher radii �i.e., with

chirality �19,0� or �28,0�� it should be almost negligible and
both potentials become equivalent. However on the basis of
the calculated differences of the binding energies it is impos-
sible to judge which potential describes nanotubes more ac-
curately because the asymptotic of the potentials depends on
the form of the parametrization. In order to make the judge-
ment on the quality of Brenner and Tersoff potentials we
have used the calculated energies to determine the curvature
constant and the Young modulus for single-wall carbon
nanotubes and compared the obtained values with available
experimental data and results of earlier calculations.

To relate the calculated energies to elastic properties of
nanotubes let us consider a graphene sheet which we bend to
form a nanotube of radius R. Within the framework of a
continuum elastic model the curvature energy of the sheet
can be written as follows �17,21,72–74�:

Ec =
�ELd3

12R
, �37�

where E is the Young modulus of the graphene sheet, d is its
thickness, and L is the length of the nanotube. The length of
the nanotube can be expressed via the total number of atoms
N as follows:

L =
Si

2�R
=

�i�N − Ne − Ncap�
2�R

, �38�

where Si is the surface area of the tubular part of the nano-
tube, Ne is the number of atoms at the edge, and Ncap is the
number of atoms in the cap �see Fig. 2�. Substituting Eq. �38�
into Eq. �37� one obtains

Ec =
Ed3�i

24R2 N −
Ed3�i

24R2 Ne −
�Ed3�i

12�cap
. �39�

The first term in Eq. �39� corresponds to the curvature energy
of the tubular part of the nanotube which is equal to the
second term in the large parentheses in Eq. �22�. Thus,

C

R2 =
Ed3�i

24R2 =
	3�2�c

n2 + m2 + nm
. �40�

Here C is the curvature constant,

C =
3	3�a2

4
�c � �i�c. �41�

Substituting the curvature constant, Eq. �41� into Eq. �40�
one obtains

E =
24�c

d3 . �42�

The curvature constant C has been a subject of many in-
vestigations �17,18,21,22,57,73,75–78�. With �a=1.41 Å
and Eq. �41� one obtains Cters=1.5183 eV Å2 for the Tersoff
potential calculations and Cbren=0.9168 eV Å2 for the Bren-
ner potential calculations. Cters is very close to the value
1.57 eV Å2 extracted from the measured phonon spectrum of
graphite �77� and is in agreement with 1.44 eV Å2,
1.34 eV Å2, and 1.53 eV Å2, which were calculated in Refs.
�18,57,78�. These values were calculated with the use of em-

FIG. 8. �Color online� Comparison of the binding energy per
atom calculated using Brenner �dots� and Tersoff �squares� poten-
tials for capped nanotubes with chirality �5,0�; �5,5�; �6,0�; �9,0�.
The line shows the binding energy per atom calculated using the
liquid surface model.
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pirical potentials and using the tight-binding model. Ab initio
density functional theory calculations lead to a somewhat
higher value of the curvature constant. Thus the values
2.0 eV Å2, 2.9 eV Å2, and 2.14 eV Å2 were reported in Refs.
�22,73,75�.

The curvature constants reported earlier are in better
agreement with the result obtained for the open end nano-
tubes using the Tersoff potential than with the value Cbren
calculated using Brenner potential. This fact shows that the
Tersoff potential describes elastic properties of the nanotubes
more accurately.

Young modulus is another important characteristic of the
nanotubes. Researchers have reported widely varying
Young’s modulus values for carbon nanotubes in the range
0.32–5.5 TPa �15,16,18–23,77�. The large scatter of these
values is apparently due to different measurement tech-
niques, simulation methods, and dimensions �diameter, thick-
ness, and configuration�. As seen from Eq. �42� the Young
modulus depends on the effective thickness of the graphene
layer d. In Ref. �16� and Ref. �18� it has been suggested that
the thickness of a graphene sheet is equal to 0.66 Å and
0.74 Å, respectively, being the radius of a single carbon
atom. In Refs. �17,19� the thickness 3.4 Å was used, which is
equal to the interplane distance in graphite. For our estimates
we use d=1.5 Å which is approximately equal to the inter-
carbon distance in graphene. This value corresponds to the
thickness of a fullerene shell �79� as reported by Rüdel et al.
�80�. Thus we obtain Eters=0.670 TPa and Ebren=0.404 TPa.
Both values are within the ranges reported earlier indicating
that the Tersoff and the Brenner potentials adequately de-
scribe the elastic properties of the nanotubes.

Despite the differences in results obtained using the Bren-
ner and the Tersoff potentials, the liquid surface model is a
universal tool. Differences between the potentials can always
be accounted for by the parameters without changing the
general framework of the model. Thus, it is feasible to derive
the liquid surface model parameters from the comparison of
its predictions with the results of ab initio calculations being
based on LDA approximation or the Hartree-Fock theory.

D. Accounting for catalytic nanoparticle

It is experimentally known that when capped nanotubes
grow from a catalytic nanoparticle �33,35,53�, they have no
open edges. The noncapped edge of a nanotube is embedded
in the catalytic particle, which changes the interaction energy
of the atoms in the vicinity of the contact.

In order to understand how the interaction of a nanotube
with the catalytic nanoparticle influence the stability of a
nanotube we use the model developed in Ref. �42� for cal-
culating the interaction of a deposited cluster with a sub-
strate. The catalytic nanoparticle is typically composed of Ni,
Co or Fe atoms and the carbon atoms from feedstock mol-
ecules diffuse inside from the catalytic region towards the
growth region �32–34�. Thus, in the following discussion we
consider the catalytic nanoparticle being composed of a mix-
ture of nickel and carbon atoms, as schematically illustrated
in Fig. 9. The atoms of the catalytic nanoparticle interact
with the carbon atoms of the nanotube via the Morse poten-
tial,

Uk�r� = �k„�1 − exp�− �k�r − r0k
���2 − 1… . �43�

Here r is the distance between an atom of the nanotube and
an atom of the catalytic particle, �k, �k, and r0k

are param-
eters of the potential. Index k denotes either carbon-carbon
�C� or carbon-nickel �Ni� interaction.

The Morse parameters � and r0 are 2.625 Å−1 and 1.39 Å
for the C-C interaction �81�, while for the C-Ni interaction
these parameters are 1.9213 Å−1 and 1.7518 Å, respectively
�82�. The parameter � is varied in different papers by more
than an order of magnitude. For example in Ref. �82� it is
2.4781 eV for the C-Ni interaction, while in Ref. �83� it is
0.1 eV. The parameter � for the C-C interaction is usually
taken as 3.7–3.8 eV �81,84�.

With the use of formalism developed in Ref. �42� the
interaction energy of a nanotube with the catalytic nanopar-
ticle can be estimated as

Eint =
2�RnC

S0
�

Vn

�
z0

L+z0

UC��r − r1��dV1dz

+
2�RnNi

S0
�

Vn

�
z0

L+z0

UNi��r − r1��dV1dz , �44�

where nC=NC /Vn and nNi=NNi /Vn are the concentrations of
carbon and nickel in the catalytic nanoparticle, Vn is the vol-
ume of the nanoparticle, S0 is the cross-section area of a
single carbon atom, and z0 is the distance between the cata-
lytic particle and the nanotube �see Fig. 9�. r= ix+ jy+kz is
the vector describing an atom in the nanotube �i, j, and k are
the unit basis vectors�, while r1 is the vector which describes
an atom in the catalytic nanoparticle �see Fig. 9�. Equation
�44� can be written as follows:

FIG. 9. �Color online� Single-wall carbon nanotube atop a cata-
lytic nickel nanoparticle, z0 is the distance between the nanotube
and the catalytic nanoparticle, L is the length of the nanotube, R is
the nanotube radius, and Rpart is the radius of the nanoparticle.
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Eint = − �C · NC · �C�z0,Rpart,R� − �Ni · NNi · �Ni�z0,Rpart,R� ,

�45�

where �C,�Ni are dimensionless functions defining interac-
tions determined by the size and topology of the catalytic
nanoparticle defined by the integrals in Eq. �44� as follows:

�k =
2�R

VnS0
�

Vn

�
z0

L+z0

��1 − e−�k��r−r1�−r0k
��2 − 1�dV1dz .

�46�

Let us consider the binding energy per atom for a nano-
tube of chirality �28,0� accounting for the interaction with
catalytic nanoparticle. According to Eq. �19� the radius of
this nanotube is equal to R28
0=10.88 Å. We assume the
catalytic nanoparticle to be a sphere of radius Rpart=2R28
0
�see Fig. 9�, thus the total number of atoms in the catalytic
nanoparticle can be estimated as Ntotal�Vn /VNi, where VNi
=4 /3�RNi

3 is the effective volume of a single nickel atom.
With RNi�1.245 Å one obtains Ntotal�5340.

Let us assume the fraction of carbon atoms in the catalytic
nanoparticle to be 0.1, resulting in NC=534 and NNi=4806.
The distance between the nanotube and the nanoparticle, z0
�0.9 Å, being the distance at which the interaction energy
of a single carbon atom with an infinite crystal of nickel
atoms has a minimum. Substituting the numbers into Eq.
�46� and calculating S0 from Eq. �20� one obtains �C
=0.0033, and �Ni=0.0122. Substituting �C, �Ni, NC, and NNi
into Eq. �45� �S0��i, defined in Eq. �45�� one obtains the
correction to the total energy of a nanotube as a function of
potential well depth for the C-C and C-Ni interactions �C and
�Ni. Since the parameters �C and �Ni vary in different papers
significantly we assume �C=�Ni=�. We have varied � in or-
der to illustrate the influence of the catalytic nanoparticle on
the nanotube stability.

In Fig. 10 we show the binding energy per atom calcu-
lated using the Brenner potential for the capped nanotube of
chirality �28.0�. Different lines show the binding energy per
atom calculated using the liquid surface model with account-
ing for the interaction with the catalytic nanoparticle and
correspond to the different values of parameter �. The corre-
sponding values of � are given in the inset. From Fig. 10 it is
clear that the catalytic nanoparticle changes the energetics of
the nanotube dramatically. If the interaction of a nanotube
with the catalytic nanoparticle is weak �i.e., the well depth of
the interatomic potential is �1 eV� than longer nanotubes
are energetically more favorable, because the binding energy
per atom decreases and the following condition is fulfilled:

EN+1 − EN − E1 � 0. �47�

Here EN+1 and EN are the energies of nanotubes with N+1
and N atoms, respectively, while E1=0 is the energy of a
single atom. If the condition Eq. �47� holds then attachment
of additional atoms to the nanotube is energetically favorable
resulting in its growth. Figure 10 shows that if the catalytic
nanoparticle-nanotube interaction is strong �see curves calcu-
lated with �=1.2 eV and �=1.5 eV in Fig. 10� than the trend
of the binding energy per atom changes and it becomes en-
ergetically more favorable for the nanotube to collapse.

IV. CONCLUSIONS

Many of the important properties of nanotubes depend on
their energetics. We have developed a model which is ca-
pable to predict the energies of single-wall nanotubes with
high accuracy once the chirality and the total number of at-
oms are known. Even with empirical potentials, like Tersoff
potential, there are limitations on the size of nanotubes
whose energy can be calculated. Hence, the developed liquid
surface model serves as a potential candidate for the energy
calculation of very large nanotubes.

The liquid surface model was suggested for open end and
capped nanotubes. It was shown that the energy of capped
nanotubes is determined by five physical parameters, while
for the open end nanotubes three parameters are sufficient.
The parameters of the liquid surface model were determined
from the calculations performed with the use of empirical
Tersoff and Brenner potentials and the accuracy of the model
was analyzed. It was shown that the liquid surface model can
predict the binding energy per atom for nanotubes with rela-
tive error below 0.3%, corresponding to the absolute energy
difference being less then 0.01 eV.

The influence of the catalytic nanoparticle, atop which
nanotubes grow, on the nanotube energetics was also dis-
cussed. It was demonstrated that the catalytic nanoparticle
changes the binding energy per atom dramatically. In par-
ticular, it was shown that if the interaction of a nanotube with
the catalytic nanoparticle is weak �i.e., �1 eV� than attach-
ment of an additional atom to a nanotube is an energetically
favorable process, while if the catalytic nanoparticle-
nanotube interaction is strong ��1 eV�, it becomes energeti-
cally more favorable for the nanotube to collapse. The sug-
gested model gives an important insight in the energetics and
stability of nanotubes of different chirality and is an impor-

FIG. 10. �Color online� Binding energy per atom calculated us-
ing the Brenner potential �dots� for a capped nanotube of chirality
�28,0�. Different lines show the binding energy per atom calculated
using the liquid surface model with accounting for the interaction
with the catalytic nanoparticle and correspond to the different val-
ues of the parameter � which describes the interatomic interaction.
The corresponding values of � are indicated in the inset.
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tant step towards the understanding of nanotube growth pro-
cess.

We have also analyzed elastic properties of nanotubes and
have performed a comparison with available experimental
measurements and earlier theoretical predictions. Namely,
we have calculated the Young modulus and the curvature
constant for single-wall carbon nanotubes from the param-
eters of the liquid surface model and demonstrated that the
obtained values are in agreement with the values reported
earlier. The calculated Young modulus and the curvature con-
stant were used to conclude about the accuracy of the Tersoff
and the Brenner potentials. The elastic properties were de-
rived from the parameters of the liquid surface model ob-
tained from the Tersoff and the Brenner potential calcula-
tions and therefore correspond to the values calculated
within the framework of the Tersoff and the Brenner poten-
tial, respectively. It was shown that the obtained values of the
Young modulus and the curvature constant are within the
ranges of values reported earlier for both potentials indicat-
ing that the Tersoff and the Brenner potentials adequately
describe the elastic properties of nanotubes.

The liquid surface model has many potential applications.
By including additional energy terms it can be used for the
study of energetics and mechanical properties of deformed

nanotubes such as toroidal and helical. Such nanotubes are
getting wider attention nowadays because of the observation
that one can change the electrical properties of nanotubes by
deforming them. Another important property which can be
studied using liquid surface model is the energetics of inter-
acting nanotubes, such as, for example, nanotubes in a crys-
talline array. Adding a volume energy term corresponding to
the interaction between different walls would allow the liq-
uid surface model to be used for the study of the energetics
of multiwall carbon nanotubes, which is left open for future
considerations and analysis.
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